skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Shaopeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global environmental change is causing a decline in biodiversity with profound implications for ecosystem functioning and stability. It remains unclear how global change factors interact to influence the effects of biodiversity on ecosystem functioning and stability. Here, using data from a 24-year experiment, we investigate the impacts of nitrogen (N) addition, enriched CO2(eCO2), and their interactions on the biodiversity-ecosystem functioning relationship (complementarity effects and selection effects), the biodiversity-ecosystem stability relationship (species asynchrony and species stability), and their connections. We show that biodiversity remains positively related to both ecosystem productivity (functioning) and its stability under N addition and eCO2. However, the combination of N addition and eCO2diminishes the effects of biodiversity on complementarity and selection effects. In contrast, N addition and eCO2do not alter the relationship between biodiversity and either species asynchrony or species stability. Under ambient conditions, both complementarity and selection effects are negatively related to species asynchrony, but neither are related to species stability; these links persist under N addition and eCO2. Our study offers insights into the underlying processes that sustain functioning and stability of biodiverse ecosystems in the face of global change. 
    more » « less
  2. Abstract Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity–stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities. 
    more » « less
  3. Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability. 
    more » « less
  4. Spatial dynamics have long been recognized as an important driver of biodiversity. However, our understanding of species’ coexistence under realistic landscape configurations has been limited by lack of adequate analytical tools. To fill this gap, we develop a spatially explicit metacommunity model of multiple competing species and derive analytical criteria for their coexistence in fragmented heterogeneous landscapes. Specifically, we propose measures of niche and fitness differences for metacommunities, which clarify how spatial dynamics and habitat configuration interact with local competition to determine coexistence of species. We parameterize our model with a Bayesian approach using a 36-y time-series dataset of three Daphnia species in a rockpool metacommunity covering >500 patches. Our results illustrate the emergence of interspecific variation in extinction and recolonization processes, including their dependencies on habitat size and environmental temperature. We find that such interspecific variation contributes to the coexistence of Daphnia species by reducing fitness differences and increasing niche differences. Additionally, our parameterized model allows separating the effects of habitat destruction and temperature change on species extinction. By integrating coexistence theory and metacommunity theory, our study provides platforms to increase our understanding of species’ coexistence in fragmented heterogeneous landscapes and the response of biodiversity to environmental changes. 
    more » « less
  5. Abstract Understanding the relationship between biodiversity and ecosystem stability is a central goal of ecologists. Recent studies have concluded that biodiversity increases community temporal stability by increasing the asynchrony between the dynamics of different species. Theoretically, this enhancement can occur through either increased between-species compensatory dynamics, a fundamentally biological mechanism; or through an averaging effect, primarily a statistical mechanism. Yet it remains unclear which mechanism is dominant in explaining the diversity-stability relationship. We address this issue by mathematically decomposing asynchrony into components separately quantifying the compensatory and statistical-averaging effects. We applied the new decomposition approach to plant survey and experimental data from North American grasslands. We show that statistical averaging, rather than compensatory dynamics, was the principal mediator of biodiversity effects on community stability. Our simple decomposition approach helps integrate concepts of stability, asynchrony, statistical averaging, and compensatory dynamics, and suggests that statistical averaging, rather than compensatory dynamics, is the primary means by which biodiversity confers ecological stability. 
    more » « less